
Chapter 4

[83]

Re-usability
If application code can be re-used within itself, or for some other external
application, then not only do we save development and maintenance costs, but we
also avoid code replication and make our code componented. For example, assume
that you are developing an Order Management System (OMS) for a company. Now
the company wants to re-use the business logic and data access code in their own
small applications that might not be a part of the OMS you are developing. If you
do not separate your code into separate physical assemblies, they won't be able to
re-use your code easily. It would be too cumbersome to make a copy of your code
as it is and then use it in a third-party application. Sometimes, it is not even possible
to make this copy, like the other system is using a different .NET language than
the one used by your OMS. So a physical separation is inevitable in such scenarios.
Once this is done, we can give them individual assemblies, such as a data access
code wrapped inside a DLL, so that they don't have to write DAL of their own and
can use our assembly instead. This method of programming is called developing an
Application Programming Interface (API). It is an important principle in software
programming to remove rigidity and make your application components re-usable
in other applications.

Application Programming Interface, or API development, is considered
a very important principle in software design and development. Each
method you write in code, if written properly, can be considered an API.
The more loosely-coupled and flexible your code is, the more API-like it
becomes. This helps you distribute your code and make it re-usable.

Loose-Coupling
If the code you write in one layer is highly-dependent on the code in some other
layer, then your code is tightly-coupled, which means changing any part of it might
break the other parts on which it is dependent. For example, in a 1-tier 2-layer system
that we studied in Chapter 3, the UI code was calling the data access layer from the
code-behind classes. This means that if the data access method has any error, the UI
code will break. So UI and DAL are tightly-coupled. In the same chapter, we learnt
the 3-layer model, where the UI interacted with business logic (BL) classes, which
in turn called DAL methods. So if the DAL method breaks, the UI may not break
as easily as in the first case, because we have made the layers loosely-coupled by
bringing in a third layer (BL).

N-Tier Architecture

[84]

If we can make the higher-level components of our application independent of each
other, then our application will become loosely-coupled. This means that changing
one of the layers or tiers should not break the other layers. For example, if your DAL
code is not properly abstracted but is tightly wound with the other layers above or
below it, then it would be difficult to re-use it in any other application. So if someone
makes a mistake in the DAL, the entire application will break down.

To avoid rigidity in large software systems, the concept of "implementation of loose
coupling" is very important. N-tier architecture makes it possible to bring in loose
coupling into our applications.

Plug and Play
To understand the Plug and Play functionality, consider the OMS example given
earlier. Consider the requirement of making the application database agnostic.
This means that the same application should work with MS SQL Server as well as
with Oracle or any other database. So we need to make our DAL code capable of
switching between databases. To achieve this, we create different DAL assemblies
each having the code targeted to each database type, and we load a specific DAL
assembly at runtime based on a key value in a config file. This means that our
application is Plug and Play.

Another simple example can be a file encryption program that needs to support
multiple encryption algorithms. The user should be able to select a particular
algorithm from among all of the choices for encrypting files. These are two simple
examples of where a Plug and Play type architecture would be required. The
application would be developed from ground up to be able to support a Plug and
Play based style. Also, this would give the developer the opportunity to write code
to support other databases or algorithms later on without changing any code in the
main application. A well-known design pattern that can be used in such cases is
known as Dependency Injection (DI, which we will learn in the coming chapters).

All of the above points are major reasons to consider an n-tier architecture and make
applications more scalable, robust, and loosely-coupled. In the coming sections,
we will learn how to break layers into physical tiers and implement an n-tier
architecture in our Order Management System, addressing what possible options
we have, and which ones to select depending on the project needs.

